

Proposed Plan Public Meeting for the Matthiessen and Hegeler Zinc Company Superfund Site

LaSalle, LaSalle County, Illinois October 20, 2015

Introductions

- Demaree Collier USEPA
- Teresa Jones USEPA
- Mike Haggitt Illinois EPA
- Scott Brockway, Eric Morton, Ray
 Mastrolonardo USEPA Contractors

Agenda

- Presentation of proposed cleanup plan
 - Brief site history
 - Summary of contamination and site risks
 - Description of cleanup
- Questions and answers
- Formal public comment opportunity

OU1

1915 - present: Carus Chemical Company - production of potassium permanganate

OU₂

1858 - 1961: Zinc smelting

1886 – 1978: Rolling Mill – zinc sheets

1950s - Ammonia Sulfate –fertilizer plant

1858 – 1937: Coal Mining

1858 – 1968: Sulfuric Acid Manufacturing

1980 – 2000: Rolling Mill – penny blanks for US Mint

2005 – 2008: Rolling Mill – Warehousing

Operable Unit Explanation

- Administrative Order on Consent for Remedial Investigation/Feasibility Study Signed with Carus Chemical (2006)
- Site divided into 2 Operable Units
 - OU1 Carus Chemical Company 47 acres
 - OU2 USEPA Superfund 180 acres and a large residential area

Superfund Process

- Remedial Investigation & Feasibility Study
- Proposed Plan ← M&H site
- Record of Decision
- Remedial Design
- Remedial Action
- Five Year Review

The M&H Site

Risk Exposure Areas:

- Carus Plant Area (~18 acres)
- Slag Pile Area (~29 acres)
- Little Vermilion River
- **OU Boundaries**
 - OU1 HHRA Exposure Areas
 - NPDES Non-Contact Cooling Water Ponds
- Little Vermilion River

Site Risks

OU1 – HHRA/ERA

- Carus Plant Area
- Slag Pile
- Little Vermilion River *

OU2 – HHRA/ERA

- Main Plant Area
- Wooded Area North
- Wooded Area Northeast *
- Building 100 Hotspot
- Rolling Mill Area
- Off-Site Residential Area
- Off-Site Mixed Use Area *
- Site-wide Groundwater

^{*} Minimal or no risks found in these areas

OU1 and OU2 Contaminants of Concern

THINTED STATES AND AGENCY OF THE PROTECTION AG

OU₂

OU1

Carus Plant Area - soil

Metals and SVOCs

Slag Pile Area – soil

Metals and SVOCs

Groundwater

Metals

Building 100 Area – soil

Metals, SVOCs, PCBs and asbestos

Rolling Mill Area - soil

Metals, SVOCs and PCBs

Main Industrial Area – soil

 Metals, SVOCs, Pesticides, PCBs and Asbestos

North Area – soil

Metals and SVOCs

Off-Site Residential Area - soil

Metals

Groundwater

Metals, SVOCs, VOCs and Pesticides

Surface Water

Metals and Pesticides

OU1 Human Health Risk Summary

Carus Plant Area - soil

- Cancer and non-cancer risks are within or below the acceptable risk range for worker scenarios
- Lead concentrations > 800 milligrams per kilogram (mg/kg) in 2 of 32 samples

Slag Pile Area - soil

- Cancer and non-cancer risks are within or below the acceptable risk range for worker scenarios
- Lead concentrations > 800 mg/kg in about half of samples

OU1 Summary – Little Vermilion River Baseline Ecological Risk Assessment (BERA) Results

Little Vermilion River

- Sediment and surface water within acceptable risk range for cancer and non-cancer
- Fish consumption cancer risks within or below acceptable risk range
- Some metals concentrations exceed generic sediment and surface water benchmarks but not significant
- Food web modeling indicated a limited potential for risks to mammals, but a marginal potential for risks to birds
- Toxicity testing did not find consistent differences between the Site Reaches and Reference Reach that could be attributed to the Site

OU2 Human Health Risk Summary

Building 100 Hotspot - soils

- Cancer risks for commercial/industrial worker
- Lead presents risk to workers and child recreationalist
- Asbestos risk to commercial/industrial worker only

Rolling Mill Area – soils

Lead presents risk to workers and child recreationalist

Main Industrial Area - soils

- Cancer risks for utility worker
- Lead presents risk to all workers and child recreationalist
- Asbestos risk to commercial/industrial worker only

North Area - soils

Lead presents risk to construction worker

OU2 Human Health Risk Summary

Off-Site Residential Area – soils

- Cancer risks for residents for arsenic at 26 of the 185 properties tested – These risks are at or exceed the high end of EPAs risk range and do require cleanup
- Non-cancer risks for construction worker and resident for antimony, arsenic, cadmium, manganese. Zinc for resident only
- Lead concentrations > 400 mg/kg at 46 of the 185 properties tested
- Lead at residences exceed 1,000 mg/kg at only 4 properties (highest lead concentration of 3,220 mg/kg).
- No samples collected indicate a high risk that requires immediate action

OU2 BERA Habitat Areas Eco-risk in NE area is low and addressing may cause more harm than actual remediation Main plant area - highly disturbed (little or no vegetation) Adjacent to the main plant - disturbed with vegetation (woodland-grassland) Savannah Oak-hickory woodland

Groundwater at OU1 and OU2

- Classified by IEPA as Class II General Resource (i.e., nonpotable) groundwater
- No groundwater supply wells at the Site
- Groundwater is not used for potable or industrial uses, including irrigation
- Agreement between the City and IEPA prohibits the drilling of water wells in City
- CONCLUSION: Groundwater does not pose a risk but will be monitored to ensure does not become a risk

AREAS REQUIRING REMEDIAL ACTION

OU1 Plant Area

OU1 – Main Plant Area Alternative

ALTERNATIVE 6 – SOIL COVER Estimated Capital Cost: \$1,195,560

Estimated Construction Timeframe: 1 month

- Excavating approximately 4,600 cy of contaminated soil
- Installation of an engineered soil
- 18 inches of clean compacted fill with an additional 6 inches of gravel placed after subgrade excavation to acquire proper grade

OU1 Slag Pile Area

OU1 – Slag Pile Area Alternative

ALTERNATIVE 15 – SLOPING AND BENCHING + PLANTINGS + REVETMENTS AT THE TOE OF THE SLOPE + BMPs (includes the soil cover in Alternative 6)

Estimated Capital Cost: \$17,766,000

Estimated Construction Timeframe: 24 months (two seasons)

- Removal of the existing Slag Pile Area vegetation, and excavation, sloping, and benching of the slag pile along the Little Vermilion River
- A minimum 2-foot thick cover consisting of engineered compacted soil placed in a minimum of two compacted layers
- Best Management Practices (BMPs) will include soil cover seeding selected for growth over the soil-covered slag pile
- High density tree planting to stabilize slope

OU2 Consolidation Area

 Each of the Alternatives presented for OU2 involve excavating contaminated soil and placing on-site in the Main Industrial Area in a containment area where an engineered cap will then be placed over the soil

OU2 Building 100 Area

OU2 – Building 100 Area – Alternative

Alternative 3 – Soil Excavation + On-Site Consolidation Under a Soil Cover

Estimated Capital Cost: \$3,200,000

Estimated Construction Timeframe: 4 months

- Approximately 34,000 cy of soil with concentrations above acceptable commercial/industrial human health risk levels will be excavated from the Building 100 Area and placed in the on-site consolidation area
- Excavated areas will be backfilled and plantings will be established

OU2 Rolling Mill Area

OU2 – Rolling Mill Area – Alternative

Alternative 3 – Soil Excavation + On-Site Consolidation Under a Soil Cover

Estimated Capital Cost: \$3,600,000

Estimated Construction Timeframe: 3 months

- Approximately 24,000 cy of soil with concentrations above acceptable commercial/industrial human health risk levels will be excavated from the Rolling Mill Area and placed within the on-site consolidation area
- Excavated areas will be backfilled and plantings will be established

OU2 Main Industrial Area

OU2 – Main Industrial Area -Alternative

Alternative 2 – Soil Excavation + On-Site Consolidation Under a Soil Cover

Estimated Capital Cost: \$33,400,900

Estimated Construction Timeframe: 26 months

- Demolition of subsurface structures and obstructions
- Roughly 400,000 cy of contaminated material from the Main Industrial Area with concentrations above acceptable commercial/ industrial human health risk levels would be excavated and placed into the consolidation area.
- Approximately 950,000 cy of material will be transported from each of the contributing areas and placed into the consolidation area
- After consolidation, area will be covered 2 feet of compacted clay and one foot of topsoil and then vegetated

OU2 North Area

OU2 - North Area - Alternative

Alternative 4 – Soil Excavation + On-Site Consolidation Under a Soil Cover

Estimated Capital Cost: \$14,900,000

Estimated Construction Timeframe: 7 months

- Approximately 170,000 cy of soil with concentrations above acceptable commercial/industrial human health risk levels will be excavated from the North Area and placed in the on-site consolidation area
- Excavated areas will be backfilled and plantings will be established

OU2 – Residential Area Alternative

Alternative 3 – Soil Excavation + On-Site Consolidation Under a Soil Cover *Estimated Capital Cost: \$112,147,700*

Estimated Construction Timeframe: 177 months (about 15 years)

- Roughly 200 homes were sampled out of nearly 4,500 so costs and number of homes is estimated based on the 4% properties sampled – All homes will be sampled during Design phase to determine actual number of homes needing cleanup
- Excavating contaminated soils and transporting the soils to the Main Industrial Area for consolidation in the on-site consolidation area under a soil cover
- EPA estimates that approximately 3,000 properties will require cleanup

OU2 – Residential Area Alternative

- Maximum excavation depth is estimated to be 24 inches, but could be less based on pre-design sample results
- It is estimated that close to 300,000 cy of material will be excavated from the residential area
- If contamination remains in place deeper than 24 inches, a visual barrier, such as orange construction fence or landscape fabric, will be placed on top of the contaminated soil and beneath the clean backfill soil

Proposed Soil Cleanup Goals for Residential Area

Arsenic = 18 mg/kg

Lead = 400 mg/kg

Levels established by calculation of safe levels of exposure

Arsenic

- Background arsenic is 11.8 parts per million (ppm)
- EPA evaluated cancer risks and non-cancer hazards from arsenic
- EPA determined that cleaning up to 18 ppm would be within acceptable risk range for arsenic and an Hazard Index=1

Lead

- Lead concentrations in soil are based upon protecting children from accumulating lead in the their bloodstream
- Among other things, lead affects neurological development
- Protects against a probability of children's Blood Lead Levels (BLLs) exceeding 10 micrograms per deciliter
- 400 mg/kg is protective

What are the risks to residences?

- No immediate health threats
- No threats to local ecology
- Potential contact with contaminated soil in yards
 - Accidentally getting contaminated soil in mouth
 - Breathing in contaminated dust
 - Getting contaminated soil on your skin

Residential Risk Continued

- Risk from getting soil on skin is low
- Even lower risk from breathing dust particles
- Risk from exposure is based on long-term exposure
- Homegrown produce used raised beds to plant in yards

Example

South Minneapolis Residential Cleanup

Before After

Example

Velsicol Chemical Corp. Residential Cleanup

Questions and Answers

Demaree Collier, USEPA Remedial Project Manager 312-886-0214 or collier.demaree@epa.gov

Teresa Jones, USEPA Community Involvement Coordinator 312-886-0725 or jones.teresa@epa.gov

Mike Haggitt, Illinois EPA Project Manager 217-558-1989 or Michael. Haggitt@Illinois.gov

Web: http://www.epa.gov/superfund/matthiessen-hegeler-zinc